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The dynamic equation for the second-order moment of a passive scalar increment is
investigated in the context of DNS data for decaying isotropic turbulence at several
values of the Schmidt number Sc, between 0.07 and 7. When the terms of the equation
are normalized using Kolmogorov and Batchelor scales, approximate independence
from Sc is achieved at sufficiently small r/ηB (r is the separation across which
the increment is estimated and ηB is the Batchelor length scale). The results imply
approximate independence of the mixed velocity-scalar derivative skewness from Sc
and underline the importance of the non-stationarity. At small r/ηB , the contribution
from the non-stationarity increases as Sc increases.

1. Introduction
The transport equations for two-point correlations of longitudinal velocity and

passive scalar fluctuations in isotropic turbulence were first written by Kármán &
Howarth (1938) and Corrsin (1951). They have been reproduced in a number of texts,
e.g. Monin & Yaglom (1975, equations 14.9 and 14.59). Adopting the notation used
by the latter authors, these correlations are denoted by BLL(r, t) and Bθθ(r, t), where r
is the separation between the two points. The corresponding second-order structure
functions are denoted by DLL(r, t) and Dθθ(r, t), where (for homogeneous turbulence)

1
2
DKK(r, t) = BKK(0, t)− BKK(r, t),

with K standing for either L or θ. Third-order correlations are denoted by BLL,L and
BLθ,θ and are related to the third-order structure functions via

DLLL(r, t) = 6BLL,L(r, t), DLθθ(r, t) = 4BLθ,θ(r, t).

The transport equations for DLL and Dθθ were written by Kolmogorov (1941) and
Yaglom (1949) respectively for stationary homogeneous isotropic turbulence at large
Reynolds number:

−DLLL(r) + 6ν
∂DLL(r)

∂r
= 4

5
〈ε〉r, (1.1)

−DLθθ(r) + 2κ
∂Dθθ(r)

∂r
= 2

3
〈χ〉r, (1.2)

where 〈ε〉 and 〈χ〉 are the dissipation rates of the turbulent kinetic energy 〈q2〉/2 and
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the scalar variance 〈θ2〉 respectively, defined by

2ν

∫ ∞
0

k2E(k)dk = 〈ε〉, (1.3)

2κ

∫ ∞
0

k2G(k)dk = 〈χ〉, (1.4)

where E(k) and G(k) are the three-dimensional energy and scalar spectra (ν and κ are
the molecular and scalar diffusivities respectively). Note that (1.2) contains 2/3 instead
of 4/3 in the usual form of Yaglom’s equation when 〈χ〉 is defined as the dissipation
rate of 〈θ2〉/2. The retention of the non-stationarity leads to the appearance of an
additional term in either (1.1) or (1.2) (e.g. Saffman 1968; Lindborg 1999; Danaila et
al. 1999; Hill 2001), namely

−DLLL(r, t) + 6ν
∂DLL(r, t)

∂r
− 3

r4

∫ r

0

s4
∂DLL(s, t)

∂t
ds = 4

5
〈ε〉r, (1.5)

and

−DLθθ(r, t) + 2κ
∂Dθθ(r, t)

∂r
− 3

r2

∫ r

0

s2
∂Dθθ(s, t)

∂t
ds = 2

3
〈χ〉r , (1.6)

where s is a dummy variable representing the separation. Equations (1.5) and (1.6)
can be symbolically rewritten as

A+ B + S = 4
5
〈ε〉r, Aθ + Bθ + Sθ = 2

3
〈χ〉r

respectively. The new (integral) terms S and Sθ can be interpreted as ‘source’ terms
since they have the same sign as A (or Aθ) and B (or Bθ). The contribution of S in (1.5)
has been shown to be significant, at least at moderate values of the Reynolds number,
for values of r which would normally be identified with the inertial range (Danaila
et al. 1999; Lindborg 1999; Alvelius 1999; Alvelius & Johansson 2000). Alvelius
(1999) used forcing in a large-eddy simulation to generate statistically stationary
homogeneous turbulence; in this way, the Kolmogorov ‘4/5’ relation was more or
less recovered, in contrast with a simulation of decaying turbulence for which the
peak value of DLLL/(r〈ε〉) is only about 0.5. Danaila et al. (1999) also showed that
Sθ is equally important for slightly heated grid turbulence at a low Reynolds number
and one value (' 0.7) of the Prandtl number Pr (≡ ν/κ, where κ is the thermal
diffusivity of the fluid). In Danaila et al. (1999) the Eulerian time derivative ∂/∂t
in (1.5) and (1.6) is strictly zero in the laboratory reference frame but non-zero in
a system moving with the mean flow since the turbulence decays along the mean
flow direction. In the present work, the turbulence is homogeneous but decays with
respect to time. The present paper essentially extends the investigation of Danaila et
al. (1999) by assessing the relative importance of the non-stationary term when the
Schmidt number Sc (≡ ν/κ, where κ is the molecular diffusivity of the scalar) varies
significantly. Direct numerical simulation (DNS) data for decaying homogeneous (and
nearly isotropic) turbulence with Sc equal to 0.07, 0.3, 0.7, 1, 3 and 7 are used to test
normalized forms of (1.5) and (1.6). The normalization is discussed in § 2 while brief
details on the simulations are given in § 3. The results are presented and discussed
in § 4. Part of the motivation for this paper is the need to re-interpret the existing
framework of small-scale phenomenology (e.g. Warhaft 2000) when effects extraneous
to (1.1) and (1.2) are present.
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Figure 1. Three-dimensional scalar spectra at all values of Sc. – –, Sc = 0.07; - - -, 0.3; — - —, 0.7;
— - - —, 1; - - - - - -, 3; — —, 7. The solid curve was obtained from a pseudo-spectral simulation
at Sc = 7. The arrow is in the direction of increasing Sc.

2. Normalization of generalized equations
The Kolmogorov velocity (UK ≡ ν1/4〈ε〉1/4) and length (η ≡ ν3/4〈ε〉−1/4) scales are

appropriate for normalizing (1.5) when the focus is on small scales, i.e. for values of
r in the dissipative and inertial ranges. The Kolmogorov-normalized form of (1.5) is

A∗ + B∗ + S∗ = 4
5
r∗, (2.1)

where the asterisk denotes Kolmogorov normalization. For the present range of Sc,
Batchelor length ηB (≡ ηSc−1/2) and scalar θB (≡ [〈χ〉η/UK]1/2) scales seem appropri-
ate for normalizing small-scale scalar quantities. It has now been established (e.g. Kerr
1990; Gibson 1991; Pumir 1994; Bogucki, Domaradzki & Yeung 1997; Brethouwer &
Nieuwstadt 1999; Nieuwstadt & Brethouwer 2000; Yeung, Sykes & Vedula 2000) that
the high-wavenumber portion of the scalar spectrum (or correspondingly the scalar
structure function at small separations) scales on ηB and θB , at least when Sc is greater
than about 0.1. The present distributions of G†(k†) (the dagger denotes normalization
by ηB and/or θB) in figure 1 indicate a satisfactory collapse for k† & 0.2 for all values
of Sc except Sc = 0.07 (a possible difficulty here is the very small value of Peλθ in our
simulation). The high-wavenumber collapse of G†(k†) in figure 1 is also confirmed
(the plot is not shown here) by the good collapse, for Sc > 0.3, of the probability
density functions of D†θθ at sufficiently small r†. The collapse reflects the role of the
compressive strain rate γ ≡ (〈ε〉/ν)1/2 (note that ηB ≡ (κ/γ)1/2) in the formation of
scalar sheets. Batchelor (1959) showed that γ is the relevant parameter for mixing at
the smallest scales when Sc� 1. However, Gibson (1968a,b) argued that γ is relevant
to the small-scale mixing process irrespectively of Sc. For Sc� 1, Batchelor, Howells
& Townsend (1959) assumed that the Obukhov–Corrsin scale ηOC ≡ (κ3/〈ε〉)1/4

was
relevant and proposed that G(k) ∼ k−17/3 when η−1

OC < k < η−1. Gibson (1968b) also
predicted a k−17/3 behaviour in the range η−1

B < k < η−1 and a k−3 behaviour for
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η−1
OC < k < η−1

B . Available evidence, based either on experimental or numerical data,
does not however seem to support either of these two results conclusively.

Included in figure 1 is the distribution of G(k) at Sc = 7 obtained with a finer
resolution (3843) pseudo-spectral simulation; it is in reasonable agreement with the
present finite difference distributions. The ratio (η/UK), or Kolmogorov time scale
tK , which appears in θB essentially reflects the action of the compressive strain rate
(〈ε〉/ν)1/2) on the scalar. It is therefore appropriate to normalize t in (1.6) in the same
way as in (1.5). It is also appropriate to continue to use UK to normalize the velocity
fluctuation contained in DLLL. The normalized form of (1.6) can then be written as

A
†
θ + B

†
θ + S

†
θ = 2

3
r†, (2.2)

where A†θ ≡ Sc1/2D
†
Lθθ(r

†, t∗). The appearance of Sc1/2 in Aθ suggests that, within this
normalization framework (its relevance is tested in § 4), dynamic similarity for the
smallest scales requires that Sc should remain constant.

3. Numerical simulations
All the results presented here have been obtained with a finite difference scheme

(2503 grid), which is second-order in space and time, on a desktop workstation. For
a particular value of Sc, a computational time of about 5 days was required for 10
computational time units, with a time step of 0.02. The simulation was performed
in a cubic box of size 2π with a prescribed energy spectrum at t = 0. The turbulent
velocity field is homogeneous; there is however a slight anisotropy at large scales,
e.g. 〈v2〉/〈u2〉 ' 1.14 and 〈w2〉/〈u2〉 ' 1.13, where u, v, w are the velocity fluctuations
in the x-, y-, z-directions respectively (〈q2〉 ≡ 〈u2〉 + 〈v2〉 + 〈w2〉). For the scalar, the
simulation was initiated with a random phase spectrum similar in shape to that of
〈q2〉. A finite relaxation time was required before 〈q2〉 and 〈θ2〉 displayed power-law
decay rates. Velocity and passive scalar fields at t = 10 (or t∗ = 11.8) were used as the
initial conditions for the calculation of the subsequent 10 time units. At t = 20, the
estimate of 〈χ〉 for Sc = 7 was found to be too low; for this case, the simulation was
extended a further 10 time steps (i.e. to t = 30) so as to allow satisfactory convergence
of the integral in (1.4). More details on the simulation, including the effect of different
initial conditions, are given in Orlandi & Antonia (2001). At t = 20 (or t∗ ' 23.6), the
Taylor microscale Reynolds number Rλ was about 47 (Rλ decays only slowly between
t = 20 and 30). The turbulent Péclet number Peλθ ≡ (〈q2〉/3)1/2λθ/κ (the Corrsin

microscale λθ is defined by the ratio 〈θ2〉1/2/〈(∂θ/∂x)2〉) varies as Sc1/2; it increases
from 13.6 at Sc = 0.07 to 136 at Sc = 7. Spectra of velocity and scalar (Sc = 0.7)
fluctuations were in good agreement with those measured in grid turbulence at a
comparable Rλ (Zhou et al. 2000; Danaila et al. 2000).

Structure functions were evaluated in physical space. Although this is a time-
consuming calculation, it need only be done at one particular time within the range
for which 〈q2〉 and 〈θ2〉 exhibit power-law decay rates. It can be implemented more
efficiently via FFTs, especially if a long-time evolution of ∂DKK/∂t is required.

4. Results
We examine here the relative contributions of the terms in (2.1) and (2.2) evaluated

at t = 20 for 0.07 6 Sc 6 3 and t = 30 for Sc = 7. Differentiation of DLL and Dθθ
with respect to r was relatively straightforward. The temporal derivatives of DLL and
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Figure 2. Estimates of all terms in the Kolmogorov-normalized equation (2.1), namely
A∗ +B∗ + S∗ = (4/5)r∗. — - —, A∗; — - - —, B∗; — - - - —, S ∗; —, (4/5)r∗; - - - - - -, A∗ +B∗ + S∗.

Dθθ were estimated from values of DLL and Dθθ stored at three consecutive times
centred either at t = 20 or 30.

Estimates of A∗, B∗, S∗ are shown in figure 2 together with (4/5)r∗, i.e. the term
on the right-hand side of (2.1). As expected, the viscous term B∗ provides the major
contribution at small r∗. Term A∗ increases with r∗ and becomes comparable in
magnitude to B∗ at r∗ ' 10 (this location has been shown not to be significantly
affected by the Reynolds number); at large enough r∗, this term must go to zero
as the velocity fluctuations at the two points become uncorrelated. Term S∗, which
reflects the non-stationarity of this flow, increases steadily with r∗, overtaking term A
at r∗ equal to about 20 (for reference, λ∗ ' 15). At larger r∗, S∗ provides the major
contribution to (4/5)r∗, approaching this latter value when r∗ & 100. This behaviour
is expected since, at sufficiently large scales (for reference, L∗ ' 124), (2.1) reduces to

〈ε〉 = −d〈q2〉/2
dt

(4.1)

namely a balance between the energy dissipation rate and the kinetic energy decay
rate. This point was discussed by Danaila et al. (1999) and Antonia et al. (2000).
The latter also noted that, as r∗ → 1, (2.1) correctly represents the behaviour of the
transport equation of 〈ε〉 or, for homogeneous turbulence, the enstrophy 〈ω2〉 (e.g.
Batchelor & Townsend 1947 ). The sum of A∗, B∗ and S∗ is also shown in figure 2. It
is practically indistinguishable from (4/5)r∗; the imbalance I , or difference between
(4/5)r∗ and (A∗ + B∗ + S∗), is small (except at very small and very large r∗, the ratio
I/(4r∗/5) lies within ±0.05; this is a satisfactory test of the accuracy achieved in the
simulation). The ratio A∗/(4r∗/5) has a maximum of about 0.49, i.e. approximately
half the value predicted by Kolmogorov (1941). Zhou & Antonia (2000) presented
results, obtained in decaying grid turbulence, for the dependence of (A/r∗) on Rλ; for
Rλ ' 50, figure 7 of their paper indicates a peak value of about 0.34 for A/r∗ or
0.43 for A/(4r∗/5). This is in reasonable agreement with the present value; it should
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Figure 3. Estimates of all terms in equation (2.2), namely A†θ + B
†
θ + S

†
θ = (2/3)r† for all values of

the Schmidt number. (a) Sc = 0.07; (b) Sc = 0.3; (c) Sc = 0.7; (d ) Sc = 1; (e) Sc = 3; (f ) Sc = 7.

— - —, A†θ; — - - —, B†θ ; — - - - —, S†θ ; —, (2/3)r†; - - - - - -, A†θ + B
†
θ + S

†
θ .

be underlined however that this low value simply reflects the importance of the non-
stationary term in the present study or the non-homogeneity in the experiments of
Zhou & Antonia (2000).

The terms in (2.2) are shown in figure 3 for all values of Sc. As in figure 2,
the contribution from the non-stationary term S

†
θ continues to increase with r† and

becomes dominant at large r†, as required by the balance

〈χ〉 = −d〈θ2〉
dt

(4.2)

between the mean dissipation rate and the temporal rate of decay of the scalar
variance. The non-stationarity is equally important as r → 0 since, as noted in
Antonia et al. (2000), the transport equation of 〈χ〉 (as written originally by Corrsin
1953) is retrieved correctly at order r3.

Irrespectively of Sc, the relative trends of A†θ , B
†
θ , S

†
θ are similar to those shown in

figure 2. There is however an effect of Sc on the relative magnitudes and variations,
with respect to r†, of A†θ , B

†
θ and S†θ . For Sc = 0.07 (figure 3a), B†θ is essentially equal

to (2/3)r† up to r† ' 3 and continues to increase to a maximum at about r† ' 8.

This maximum corresponds approximately with the intersection r
†
1 (see figure 3b)

between B
†
θ and A

†
θ . At larger values of Sc, r†1 remains essentially constant (' 6).

The importance of S †θ vis-à-vis B†θ and A
†
θ can be inferred from the variation with
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Sc of r†2 and r
†
3, the intersections (identified in figure 3) of S†θ with B

†
θ and A

†
θ

respectively. The magnitude of r†2 continues to decrease as Sc increases whereas r†3
increases initially before becoming approximately constant (' 60) when Sc & 0.7. The
accuracy with which S

†
θ has been estimated can be assessed by comparing the sum

(A†θ + B
†
θ + S

†
θ ) with (2r†/3). Except at Sc = 0.07 (figure 3a), these two quantities are

nearly indistinguishable in figure 3. The imbalance I†θ , or difference between (2r†/3)

and (A†θ + B
†
θ + S

†
θ ), is largest at Sc = 0.07 (figure 3a). In this latter case, I†θ /(2r†/3)

is about – 0.15 in the range 1 . r† . 10. For all other values of Sc, I†θ /(2r†/3) lies
within ±0.05 over the range 1 . r† . 50. Figure 4 underlines the important overall
contribution from S

†
θ to the right-hand side of (2.2), irrespectively of r†. At large

r†, the ratio S
†
θ /(2r

†/3) approaches 1, as expected from (4.2). At small r†, there is
a systematic increase with Sc; e.g. at r† ' 3, the ratio increases from about 3% at
Sc = 0.07 to 15% at Sc = 7.

The collapse at large k† of the scalar spectra shown in figure 1 implies that
the Batchelor-normalized second-order scalar structure functions should collapse at
sufficiently small r†. It is of interest to consider the behaviour of the mixed third-order

velocity-scalar structure functions at small r†. For this purpose, the ratio A
†
θ/r
†3 has

been plotted in figure 5. The limiting value when r → 0 of DLθθ ≡ 〈δu(δθ)2〉 is given
by 〈(∂u/∂x)(∂θ/∂x)2〉r3; here, δu ≡ u(x+ r)−u(x) and δθ = θ(x+ r)−θ(x), with r the

separation in the x-direction. Assuming local isotropy, the limiting value of A†θ/r†
3

is Sc−1/2ST/(6 × 151/2), where ST ≡ −〈(∂u/∂x)(∂θ/∂x)2〉/[〈(∂u/∂x)2〉1/2〈(∂θ/∂x)2〉] is
the so-called mixed derivative skewness (Antonia, Chambers & Browne 1983 had
earlier indicated that the limiting value of −D∗3

Lθθ/r
∗3 is given by PrST/(6 × 151/2).

Sreenivasan & Antonia (1997) noted that the magnitude of ST depends only weakly
on Rλ, but the dependence of ST on Sc was unclear. The inset in figure 5 highlights
the behaviour of the data as r† → 0. For Sc = 0.07, 0.3, 0.7 and 1, the trend of the
data suggests that the most likely value of ST is 0.5 (this corresponds to the dashed
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as a function of r† for all values of Sc. The solid arrow is in the direction of

increasing Sc. The horizontal dashed line corresponds to a value of ST /(6 × 151/2), with ST = 0.5.
The solid line has a slope of −2 which corresponds to a linear dependence on r of DLθθ . The inset
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horizontal line) with a variation of about ±0.03. The results in figure 3 of Kerr (1985)
for Sc = 0.5, 1 and 2 (and Rλ & 30) also indicate a value of 0.5 for ST with a variation
comparable to that in figure 5. For Sc = 0.1, Kerr obtained a smaller value of ST
(' 0.41 at Rλ = 50). The results of Wang, Chen & Brasseur (1999) for Sc = 0.7 and
1 indicated an average value of ST of about 0.48. It is difficult to estimate ST for the
present data at Sc = 3 and 7 since the first data point is at r† = 2.84 for Sc = 3
and at 3.35 for Sc = 7. The resolution for these two runs is not sufficient to allow a
reliable estimate of ST . The difficulty of achieving reliable estimates of ST when Sc
exceeds 1 has been discussed in some detail in Orlandi & Antonia (2001). A likely
source of error is the non-closure of the integrand in

∫ ∞
0
k4

1φθ(k1)dk1, where φθ(k1) is
the one-dimensional scalar spectrum (k1 is the one-dimensional wavenumber). For the
3843 pseudo-spectral simulation at Sc = 7 (see figure 1), we inferred a value of about
0.49 for ST using the previous integral. Although this is an indirect estimate based on

the assumption that 〈(∂u/∂x)(∂θ/∂x)2〉 is equal to −(2/3)〈(∂2θ/∂x2)
2〉, it does not rule

out a possible approach towards ST ' 0.5 for the present distributions at Sc = 3 and
7. Further, more refined, simulations are needed to allow a more definite statement
regarding the independence of ST from Sc.

5. Conclusions
DNS data for temporally decaying quasi-isotropic turbulence confirm the impor-

tance of the non-stationarity in the generalized form of Kolmogorov’s equation, (2.1),
as previously established for spatially decaying inhomogeneous turbulence down-
stream of a grid by Danaila et al. (1999) . The non-stationary term in the generalized
version of Yaglom’s equation, (2.2), which describes the decay of a passive scalar in
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the same flow, is equally important, irrespectively of the Schmidt number Sc and r†.
The importance, when varying Sc, of the terms A†θ , B

†
θ and S†θ in (2.2) can be gauged

from figures 3 and 4. The latter figure highlights the increased importance of the
non-stationarity at small r†, as Sc increases. The present results also confirm the ap-
propriateness of normalizing with Batchelor scales at small separations, at least when
Sc is not too small. In particular, there is reasonable collapse over the range r . 20ηB
of the third-order term A

†
θ . The trend of A†θ/r†

3
(figure 5) at small r† implies that the

magnitude of the mixed velocity-scalar derivative skewness is constant (' 0.5± 0.03)
for 0.07 6 Sc 6 1. The trend of the data for Sc = 3 and 7 does not rule out the
possibility that a value of ST equal to about 0.5 may also apply at these two higher
Schmidt numbers. However, more work is required to verify this possibility.
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